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ATISTRACT 
I 

The motion of charged particles i n  a model magnetosphere is studied using 

thc three adiabatic invariants. The particle shell geometry is determined, and 

drift vclocities. bounce periods a n d  equatorial pitch angles are computed as a 

functioii of local time. The following cwnclusions were reached: 

1. Shell splitting in the outer magnetospherc I)ccomes important beyond 5 

earth radii: dipole-type descriptions of the radiation belt become invalid. 

2. Equatorial pitch angles tend to align along field lines on the  night side of 

the magnetosphere, and perpendicularly to the field.  on the day side 

3 .  There are regions in the magnc>tospherc. where only pseudo-trapped 

particles can mirror .  i .e. particles which will lcavc thc magnetosphere before 

completing a 180" drift. 

4. Longitudinal drift velocities depart considcrahly irom the dipole values 

beyond 5 Rk,. and can be as  much as 2-;> times grcatcr on thc night side than on 

the day side. Thus a given particle spends 2-3 times more time in the day side 

than in the night side. 

5. The action of a pitch anglc scattering mechanism will lead to  a radial 

diffusion of particles. The loss mechanism will be greatly enhanced by scatter- 

ing of mir ror  points into the pseudo-trapping regions. 

6 .  After recovery from a prototype magnetic storm, particles which were 

in the day side during the sudden commencement will have higher energies. their 

shells having moved radially inwards. Particles caught in the night side will have 

moved outwards. with their energies 1 tecreased. 

7. The repeated action of magnctic storms will result in a net inward dif- 

fusion of particles. with a net increase of their energy. 

i i i  



ON THE ADIABATIC MOTION OF ENERGETIC PARTICLES 

I N  A MODEL MAGNETOSPHERE 

. 
I. INTRODUCTION 

Recent experimental results on trapped particle flux behavior in the outer 

magnetosphere indicate that physical processes governing particle diffusion and 

acceleration, a r e  strongly influenced by the trapping field itself and by the time- 

changes of its configuration. The main evidence comes from the observed strong 

correlations between particle flux and energy spectra variations beyond 2-3 

earth radii, with geomagnetic perturbations such as the sudden commencement 

of a geomagnetic storm or the ring current during the main phase [Frank, 1966; 

McIlwain, 1965; McIlwain, 19661. It seems therefore useful to attempt a detailed 

theoretical description of the behavior of a flux of trapped particles using a reason- 

ably accurate magnetospheric field model, and simulating prototype time varia- 

tions of the field configuration. The first detailed studies of this type were done 

by Hones [19631 for auroral particles. and by Fairfield [19641 for energetic 

particles. 

There a r e  several sources of the field in the geomagnetic cavity: the mag- 

netization of the earth's interior, the currents flowing on the surface of the mag- 

netopause, the currents in the "neutral sheet" of the tail of the magnetosphere and, 

. 

eventually, diamagnetic ring currents originating in trapped particle density 

gradients at 2-4 earth radii. At geocentric distances of less than, say, 4 earth 

radii, the internal geomagnetic field dominates; beyond 4R,, the currents in 

the magnetopause (and in the neutral sheet) perturb the dipole-type internal 

field, and introduce a strong noon-midnight asymmetry. Any model must take 

these sources into account. 
1 



Before adopting de facto a given field model, let us list our requirements. 

First of al1,we are mainly interested in particles trapped on field lines reaching out 

beyond, say, 5 earth radii, on the equatorial plane. This means that we can safely 

ignore all higher multipoles of the internal field, and replace it by a centered 

dipole. Second, we shall also ignore the effect of a ring current. Third, we shall 

consider the dipole axis perpendicular to the sun-earth line, which of course is a 

very substantial limitation. However, a "wobbling" dipole would make our calcu- 

lations immensely more complicated, without, however, adding much to the gen- 

eral results, at least within the scope of this paper. Finally, electric fields will 

be ignored; this means that we are restricting ourselves to particles of high 

enough energy to ensure that the gradient drift always prevails over the E X B 

drift. 

A model which satisfies these requirements and which has already predicted 

o r  explained experimental results with good quantitative agreement, is that given 

by [Mead, 1964; Williams and Mead, 1965; - Mead, 19651. This model considers 

two sources, in addition to the internal dipole; currents in  the magnetopause, 

and currents in the tail of the magnetosphere. Four adjustable parameters de- 

termine the field in Mead's model; (1) The distance Rs from the center of the 

earth to the magnetopause, in  the solar direction; (2) and (3), the distances Rmi, , 

R 

in  the anti-solar direction, respectively, and (4) the field intensity near the 

neutral sheet. Most of the typical variations of these parameters. See Section IV 

for choice of parameters actually used. 

from the center of the earth to the close and far limit of the neutral sheet max 

Fig. 1 shows field lines of this model in the noon-midnight meridians, cor- 

responding to the parameters which we shall adopt as describing the quiet-time 
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state of the magnetosphere. In this figure, all field lines s tar t  a t  equally spaced 

latitudes on the earth's surface. In order to save time and space, we shall call 

Mead's model of the magnetospheric field "the meadosphere.'! 

11. ADIABATIC INVARIANTS 

The motion of charged particles in a trapping field geometry can be described 

by means of three adiabatic constants of motion [Northrop, 1963 I. Although the 

the invariants yield incomplete information about the actual position of a particle 

as a function of time, they do lead to the determination of the two dimensional 

manifolds o r  "particle shells," on which the guiding centers of the particles are 

confined. They further provide general information on the energy changes of the 

particles , although, again, no "microscopic" time-history would be available. 

The three adiabatic invariants a r e  the following: (1) the magnetic moment 

M of the particle, generated by i ts  cyclotron motion around a field line; (2) the 

second invariant J , associated with its bounce motion along a field line between 

mirror points; (3) the flux invariant, associated with its azimuthal or longitudinal 

drift motion. The definition of these quantities are: 

P2 
2mo B 

M =  L 

J = P,, d s  

CD = f - d> 
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p,  and p , ,  are components of the momentum perpendicular and parallel to the 

magnetic field vector, respectively; B is the absolute magnetic field at the 

instantaneous position of the guiding center and m0 the rest mass. In (2),  the  

integration is extended along the field line for a complete bounce oscillation; 

ds is the element of arc of the field line. (3) represents the magnetic flux en- 

closed by the particle shell; A is the magnetic vector potential, and the integral 

is extended along any closed path passing around the particle shell and lying in 

it. These quantities are adiabatic constants, i.e. conserved only under certain 

conditions. Each of the invariants has an associated characteristic period of 

time and a characteristic length. These are respectively; (1) cyclotron period 

and gyroradius; (2) bounce period and arc length between conjugate mirror  points; 

(3) azimuthal drift period and a r c  length of the equatorial ring of the shell. In 

most magnetic field configurations, these characteristic quantities differ by sev- 

eral orders of magnitude from one another. Adiabaticity requires that the field 

configuration should not change appreciably during a characteristic period. If 

this condition is violated, the corresponding value of the invariant will no longer 

be conserved. The other two may still remain unaffected. 

In place of (1) and (2) we shall introduce two other expressions which a re  

much more convenient for numerical computations. According to (l), we intro- 

duce the mirror  point field intensity Bm: 

P2 Bm = - 
2moM 

P is the total momentum of the particle. Further, we introduce the geometric 

integral 
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extended along the field line between one mir ror  point and its conjugate. B, and 

I uniquely determine a particle shell and will be used in what follows as the two 

identifying parameters for such a shell. Notice at once that for a time-independent 

magnetic field, in absence of electric fields, (4) and (5) are adiabatic invariants, 

too. The advantage of (4) and (5) is that they only depend on the field geometry. 

For  time dependent fields, care  has to be taken regarding relation (5). If p 

changes appreciably during one bounce, we have: 

- - -  - p ( s ) , / T  ds  f I 
2p 2p 

(5') 

Only for slowly varing fields, ( 5 )  holds at all times. 

Introducing the usual relativistic factor y = m /mo, we can combine (4) and 

(5) with (1) and (2) to obtain 

1 2 B m - K 2 = c o n s t .  

To these, we must add (3),  which we write in the form: 

@ = (B,, I )  = K, c o n s t .  (8) 

These are the adiabatic constants which will be used henceforth. They uniquely 

determine y ,  I and B, for any static field configuration. For  time dependent 

fields, K, and K, in general are not constant during the :nterval of change (see 

(5')). However, if this interval is transient, i.e. if it is preceded and followed by 

time independent states of the field, the constancy of K, and K, does hold when 

(6) and (7) are evaluated for the initial and the final states. 

6 



For a field constant in  time, (8) is no longer needed, and y, I and B, are 

conserved individually. A special case is that of particles mirroring on o r  close 

to the equator ( I  = 0,  B = B ). In that case we replace (6) by the following, 

derived from (4): 

m 

Be = c o n s t .  1 
y2 - 1 

This holds all the time, even in non-static fields. In this special case, (8) is a 

function of Be only. 

We have to add Liouville's Theorem, to relations (6), (7) and (8), in order to 

complete our description of trapped particle dynamics. We introduce the direc- 

tional, differential flux of particles populating a given I , B, shell: 

j = j (y, I, B,) P a r t i c l e s / s t e r a d i a n x  e n e r g y x  s e c  (9) 

Assume particles distributed on shell in such a way that there is a steady state. 

For  each point of the shell, there is a unique cone along whose elements the given 

group of particles is streaming. This direction is the particle's pitch angle, which 

a t  the equatorial points of the shell is given by 

a e  = a r c  s i n 4 2  
m 

Be = Be(I, €3,; azimuth) is the minimum or equatorial B value of a particular 

field line of the shell. W e  must point out at once that even for time-independent 

fields, a e  is not an adiabatic invariant like the mirror  point field B,; in general 

i t  will depend on azimuth (longitude o r  local time) through Be. 

- 

The particle density in phase space, f , associated with the flux (9) is given by 

f = j/p2. Liouville's Theorem states that this density in phase space remains 

7 



constant along the dynamical path of a particle. This means that, as long as all 

particles always remain on a common shell*, even if  the shell itself changes with 

time, the following conservation theorem holds: 

( 6 ) ,  (7), ( 8 ) ,  and (11) a r e  the basic expressions to be used for the study of the 

evolution in space and time of trapped particles in the outer magnetosphere. 

The first  three lead to the determination of the actual shell of a given group of 

particles, and their actual energy; equation (11) gives the actual value of the 

directional differential flux of this group of particles. 

As was shown by [Anderson, Crane, Francis, Newkirk and Walt  19641 the -’ 
average equatorial azimuthal drift velocity u of the particles populating and I ,  B, 

shell can be obtained as a direct consequence of Liouville’s Theorem. The 

value is, with our notation: 

V I  is the limit of 8 I/’by where by is the equatorial distance between two neigh- 

boring shells, each one characterized by I and I + b  I ,  respectively, and by the 

same B,-value. S, is the half-bounce path, i.e. the rectifiedpath of the particle 

between one mirror point and its conjugate: 

*This  condition w i l l  be fulfi l led i f  all invariants ( 6 )  - (8) are conserved throughout the evolution 
of the sys tern. 
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S, is related to  the bounce period by T,, = 2 S, /v where v = particle velocity. 

W e  can obtain an expression for S, by taking the derivative of (5) with respect to  

the mirror  point field intensity Bm along a given field line. It can be shown by 

simple algebra that 

The derivative has to be taken along the given field line. This expression has 

general validity for any trapping field geometry, and is very useful for computa- 

tional purposes, for it only requires the calculation of I on two neighboring 

points of a field line. 

111. QUALITATIVE DISCUSSION 

Before getting into the discussion of numerical computations for particle 

shell geometry and time variations of the meadosphere, it is useful to present 

a qualitative analysis of the consequences of the previous section. First of all, 

let us envisage a trapping magnetic field constant in time. In this case, (4) and 

(5) are conserved. We can assign to each point in space a pair of values I, Bm 

such that a particle mirroring there has the value I for the integral (5), Bm 

being simply the field intensity at  that point. In this way, I and Bm become uni- 

form functions of space. As the particle drifts to other field lines, it must keep 

these values constant, i.e., i t  will cover a shell of field lines which pass through 

CONSTANT B SURFACE 

CONSTANT I SURFACE 

SHELL OF 
FIELD LINES 

CONSTANT 1 SURFACE 
e//, 1 \ \ \ i  

Figure 2-Geometric definition 
of a particle shell 
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the intersections of two given constant-I and constant-Bm surfaces (Fig. 2). No- 

tice carefully that the surface I = cons t. is not - the particle shell. 

Let us consider the geomagnetic field. Take a particle which starts at a 

given longitude 4 ,  circling around a given field line and mirroring at a value B,. 

The integral (5) computed along the field line between the two mir ror  points, has 

a value I .  This means that when drifting through any other longitude, say 180' 

away, this particlc will be bouncing along a field line which passes through the 

intersection of the corresponding I = cons t .  and B, = cons t. surfaces. Now take 

a particle which s tar ts  on the - same initial field line, but which mir rors  at a lower 

value B', <Bm (Fig. 3).  Its integral (5) will also be smaller, I ' < I. After a 180' 

I '  CONST 

B = COMST a:= CONST 

INITIAL FIELD LINE 
AT d 

Bb 
SPLIT SHELLS 

AT d t 180" 

Figure 3-Shell splitting in 
a syrnrnetr i c fie Ids. 

longitudinal drift, this second particle will be traveling along a field line which 

passes through the intersection of the surface I '  = const. and B', = const. 

a Only - in case of perfect azimuthal symmetry (as in the pure dipole), will these 

surfaces intersect exactly on the same line as that of the first particle. In the 

general case, particles starting on the same field line at a given longitude will 

populate different shells, according to their initial mir ror  point fields, or , what 

10 



is equivalent, according to their initial equatorial pitch angles (10) (of course, all 

these different shells would be tangent to each other at the initial field line). 

For the case of the rea l  geomagnetic field in absence of external perturba- 

tions, i.e. within about 3-4 earth radii, it can be shown that the distance between 

split shells is only very small, a fraction of 1% of the distance of the equatorial 

point of a field line to the center of the earth. In other words, with a very good 

approximation, one can say that glJ particles initially on the same field line, will 

mirror on a common field line at any other longitude. This has an important 

consequence: i t  enables a two-dimensional description of the three-dimensional 

radiation belts, a t  least up to distances of about 4 R e .  Indeed, if particles do popu- 

late the same shell irrespective of their initial mirror  points, the omnidirectional 

flux of these particles will be the same on all points of the shell having the same 

B value, irrespective of the longitude (Le. local time)(provided of course, no ap- 

preciable injections or losses occur during the drift). In order to describe 

omnidirectional particle fluxes in the inner magnetosphere, we therefore need 

only two "space" parameters: the value of the magnetic field intensity at the point 

of measurement and a parameter which characterizes the (unique) shell which 

goes through that point. This latter is McIlwain's L-parameter [McIlwain, 19611. 

L is a particular relation between I and B, which remains constant (within 6 1%) 

on a given field line, and, therfore, on the whole shell generated by particles start- 

ing on that field line. Numerically, L gives the average distance of the equatorial 

points of a shell to the magnetic center. 

But what happens in the outer magnetosphere, where the azimuthal symmetry 

is brutally removed? Particles starting on the same field line, say in the noon 

meridional plane, will now populate different shells, depending on their initial 

11 



mirror  points or equatorial pitch angles. For instance, they will cross  the mid- 

night meridian on different lines. 

Let us  start with a particle mirroring at or near the equator, on a line in 

the noon meridian, close to the boundary. For this particle, I "2 0; according to 

(6a) i t  will  drift around the earth on the equator following a constant-B path. 

This constant-B path comes considerably closer to the earth at the night side, 

because the field is weaker there (less compression), and we must go to lower 

altitudes in order to find a given B value. On the other hand, a particle which 

starts on the same field line on the noon meridian, but which is mirroring at  

high latitudes, will have a high I value. Under these circumstances, Mead has shown 

1 Mead, 19653 that the value of I is not much different from the a rc  length of the field 

line between mirror  points. On the midnight meridian, the particle will there- 

fore be found on a line which has nearly the same length than the initial one, Le. 

stretching out to roughly the same equatorial distance. In summary, all particles 

initially on the same noon-line, will cross the midnight plane on line portions 

sketched in Fig. 4. Furthermore, i t  is easy to realize that particles mirroring 

N 
t 

NOON 1 MIDNIGHT 
COMMON LINE SPLIT LINES 

Figure 4-Qualitative picture o f  shell 
splitting in a model magnetosphere for 
particles starting on a common field 
line in the noon meridian. 
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inside that area (BB'), will cross the noon meridian outside (AA')  of the initial 

line. If this noon-line is very close to the boundary, - no stably trapped particle 

could be found mirroring inside the hatched area in the midnight meridional 

plane. Any particle doing this would not be able to complete a drift around the 

earth: it would abandon the magnetosphere before reaching the noon meridian. 

We shall call this a l'pseudo-trapped'' particle l 1  (only transiently trapped). No- 

tice finally that a sharp trapping boundary in the noon side would not result in a 

sharp boundary in the back side. 

On the other hand, for a given field line in the midnight meridian, all par- 

ticles mirroring anywhere on this line, will cross the noon meridian in an area 

like the one shown in Fig. 5. All particles mirroring outside that a rea  (BB' ) 

will cross the midnight-meridian outside (AA') of the given line. If now there 

NOON MIDNIGHT 
S P L I T  LINES 

Figure 5-Qual i ta t ive  picture of 
shell splitting for particles start- 
ing on a common line in the mid- 
night meridian. 

is an l'obstacle" behind that line (like for instance the neutral sheet), no stably 

trapped particle could be found outside the hatched area in the noon meridian. 

Any particle injected there, would be lost into the "obstacle" before reaching 

the midnight meridian: in this high latitude noon region, only pseudo-trapped 

particles could exist. 

13 



We can also make some qualitative predictions regarding equatorial pitch 

angles and longitudinal drift velocities of particles trapped in the meadosphere. 

Take again a group of particles starting on a common noon-side line. 

easy to see from Fig. 4, that the equatorial B-value of a given shell must 

decrease towards the midnight meridian except for particles mirroring close 

to the equator. This means that, according to (10) , the equatorial pitch angle 

must also decrease: particles align along field lines, in the midnight meridian. 

On the other hand, inspection of Fig. 5 reveals that the opposite is true for 

particles starting on a common field line in the midnight meridian: 

align perpendicularly to the field line on the day side of the meadosphere. 

It is 

they 

Regarding the drift velocity (12), we can qualitatively say that the field near 

the day-side boundary is much more homogeneous than on the night side, or  than 

in the case of a pure dipole (Fig. 1). Therefore, V I  will be relatively smaller, 

and S, greater. Both facts indicate that the particles will drift slowest on the 

noon meridian, spending therefore a greater fractional time in the day side of 

the meadosphere. This may have very important consequences for outer belt 

dynamics. 

Turning now to a qualitative discussion of the effects of a time-dependent 

magnetic field, we first  have to point out that slow changes, which conserve 

all three invariants (6), (7) and (8), are reversible. This means that whenever 

the field is back to its initial configuration, all particles will be back on their 

initial shells with no net change in energy or directional flux. During the 

change, itself, a given shell will be deformed, its particles being accelerated 

or  decelerated and their directional flux changing accordingly. In order to have 

a net change in  shell, energy and flux after a complete cycle, it is necessary 

14 



to have a non-adiabatic change in the field, which violates, say, the third invari- 

ant. In this case, the time history of a particle depends on where in longitudinal 

position on the shell the particles was surprised by the non-adiabatic field 

change. It is easy to realize that due to this, the end-effect will always be a 

diffusion, even i f  the cause itself (the non-adiabatic change in field configura- 

tion) is not a t  all a stochastic process. Non-adiabatic compressions and dis- 

tentions of the magnetosphere very likely a re  the main cause for radial diffusion 

and acceleration of trapped protons [Nakada, Dungey and Hess,  1965 1. 

There is , however, another possible radial diffusion process, associated 

with shell splitting in the meadosphere. Suppose the action of an elastic pitch 

angle scattering process, such as interactions with electromagnetic or hydro- 

magnetic waves. This is a very short-time process which violates all three 

invariants. However, the fact that the particle remains on the same field line 

during the event (within one cyclotron radius) predetermines the new shell on 

which the particle will drift after the interaction. Inspection of Figs. 4 and 5 

reveals that for instance, a scattering process which, occuring on the noon 

side, increases the pitch angle (lowers Bm), will bring the particle to a shell 

which on the average gets closer to the earth. The same scattering process, 

occuring on the night side, would situate the particle on a shell extending 

further out. Any type of pitch angle diffusion process will therefore be accom- 

panied by a radial diffusion, which will be inwards o r  outwards according to 

- 

where in longitude the particles are more likely caught by the individual proc- 

esses. If the original pitch angle scattering process is elastic, there would be 

- no change in energy in this type of radial diffusion. Such a diffusion mechanism 

was  experimentally observed in the Laboratory, and studied theoretically, by 

[ Gibson, Jordan and Lauer, 1963 1. 
15 



IV. NUMERICAL RESULTS 

A computer code was set up to determine particle shells in the meadosphere, 

in order to study shell splitting and longitude dependence of drift  velocities and 

equatorial pitch angles for the static case, and in order to analyze the evolution 

of a system of particle shells in a time-dependent case. The computer program 

consists of four main parts, which perform more or less independent operations. 

I. 

11. 

111. 

IV.  

Field line geometry. This part  furnishes complete geometric informa- 

tion about a given field line, computes I and Bmvalues for  a set of particles 

mirroring on this field line with prefixed equatorial pitch angles [re- 

lations (lo), (4) and (5)] and determines their drift velocities and 

bounce periods [relations (12) and (13)]. 

Shell geometry. Given the particles defined in part (l), th i s  section of 

the program finds the points of prefixed I ,  Bm values at other longi- 

tudes, and traces the corresponding field lines, computing for each 

case, drift velocity and bounce period. In this way, the complete shell 

for each particle is generated. 

Third invariant. This part computes the magnetic flux (3) enclosed . 
by the shell generated by a given particle. I t  is a combination of (1) 

and (2), and a subroutine which computes the integral (3) along the 

equatorial ring of the shell. 

Non-adiabatic compression. Given a particle on a field line, this 

part changes the field configuration simulating a sudden commence- 

ment, finds the new field line (going through the same intersection 

with the earth's surface), and locates the particle's mir ror  points 

supposing conservation of the first two invariants. 

16 



V. Shell deformation during adiabatic time variations. This part  finds the 

new I and B, values, as well as the energy, of a particle after a slow 

adiabatic change in the trapping magnetic field. Conservation theorems 

(6), (7) and (8) are used in this computation. 

Part (1) is mainly based on McIlwain's INVAR code, conveniently imple- 

mented for our purposes. Part (2) contains a key subroutine called SEARCH, 

which at a given longitude finds the point of prescribed I and B, values (within 

prefixed tolerances), by an iteration method. This subroutine is quite fast (a 

fraction of a second on an IBM 7094, for a relative tolerance of in I and B).  

Part ( 5 )  contains subroutine LOOK, which starts with an approximate value of I ,  

finds B, through (7) for prescribed values of K, and K, (determined by the initial 

state), and computes the flux (8). The value of I is then corrected and the proce- 

dure iterated until the prefixed value K, for 

tolerance; y is then computed through (6). Remember that each step, i.e. each 

is approached within the wanted 

evaluation of flux requires the complete determination of a particle shell. Even 

so, this program is quite fast (10-20 seconds, to find a prefixed K,, Kz, K, shell) 

with a relative tolerance for (D of lo-,). 

This program was applied using Mead's model of the magnetosphere. The 

numerical values of the four intervening parameters (Section I) for the quiet 

meadosphere were takenfrom [Ness andWilliams, 19661:Rs = l O R , ,  R m i n  = 8 Re, 

R = 200 R e  andB, = 15 gammas. Typical closed field lines a re  shown in 

Fig. 1. The kink of the field lines reaching out beyond 8 R e  in the night side is 

caused by the assumption in Mead's model of a two dimensional neutral sheet 

rnax 

(recent measurements, however, suggest a finite thickness of several earth 
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Figure 6-Relationship between geomagnetic latitude of the intersection of a field 
line with the earth's surface, and the radial  distance to i ts equatorial point, for 
the noon, midnight and dawn/dusk meridians. 
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20 

radii [ Bame, Esbridge, Felthauser, Olson and Strong, 19661. Figure 6 shows the 

relationship between geomagnetic latitude of the intersection of a field line with 

the earth's surface, and the radial distance to its equatorial point, for the noon, 

midnight and dawn/dusk meridians. 

Par ts  I and I1 of the code were applied to this quiet time field configura- 

tion, to obtain magnetic shells for particles initially mirroring on a common 

field line, and having equatorial pitch angles with cosines 0.2, 0.4, 0.6, 0.8 and 

nearly 1 (mirroring close to the earth's surface). Fig. 7 shows how particles, 

starting on a common line in the noon meridian, do indeed drift on different 

shells, which intersect the midnight meridian along the field lines shown in the 

figure. The dots represent particles' mi r ror  points. Curves giving the position 

of mirror  points for constant equatorial pitch angles are traced for  comparison 
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(in a dipole field, they a re  constant latitude lines). Notice the change (decrease) 

in equatorial pitch angle for the same particle, when it drifts from noon to mid- 

night. Fig. 7 clearly confirms our qualitative predictions given in Section II: 

shell splitting becomes considerable beyond 5 earth radii, and completely in- 

validates the use of "L-values" or  any other dipole-type description of the 

outer radiation belt. Fig. 8 depicts the same features for particles starting on a 

common field line in  the midnight meridian. In this case, again, the pitch angle 

changes considerably when the particle drifts to the opposite meridian (increas- 

ing at  noon). 

Notice from Figs. 7 and 8 that as equatorial pitch angles increase, shell 

splitting is  directed radially inwards for particles starting on the same field 

line at  noon, and radially outwards for particles starting on a common field line 

at midnight. Furthermore, shell splitting is maximum for particles mirroring 

close to the equator: for a given change in pitch angle (in degrees), the radial 

displacement of the shell will be greater for equatorial particles. 

When the initial field line has i ts  equatorial point beyond about 8 R, a frac- 

tion of the particles mirroring on i t  can only be pseudo-trapped, being lost before 

completing a 180' drift. In particular, the computations reveal that particles 

mirroring at low latitudes in the back side, abandon the meadosphere through the 

boundary 30-40 degrees before reaching the noon meridian. On the other hand, 

particles mirroring at  high latitudes on the - day side, run into the tail (open field 

lines) 10-20 degrees before reaching the midnight meridian. Fig. 9 shows 

computed limits between stable trapping and pseudo-trapping regions in the 

meadosphere, on the noon-midnight plane. At other local times, both regions 

approach more closely the meadospheric boundary; going from noon to midnight, 
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one disappears at the expense of the growth of the other. These results indicate 

the existence of a quite considerable loss cone in the day side of the meado- 

sphere. 

Figs. 10a and lob summarize the information about the shell splitting effect. 

In both figures, the relation between noon and midnight radial distances to the 

equatorial points of a particle shell is given. In Fig. loa, particles start on a 

common field line at noon, reaching out to Rnoon earth radii; in Fig. lob, par- 

ticles start on a line at midnight, reaching out to R m i d n .  . Curves a re  labeled 

with the cosines of the initial pitch angles. Figs. l l a  and l l b  show how these 

pitch angles change when the particles drift to the opposite meridian. Notice 

again the marked tendency of particles to align along field lines on the night side, 

and to "squeeze" transverse to the field on the day side. 

The numerical calculations also confirm our predictions for local time 

dependence of the equatorial drift velocity (Section II). The geometrical factors 

appearing in (12) were computed, and represented in Figs. 12a and 12b as a 

function of the equatorial distance of the corresponding field line, for different 

pitch angles, and for noon and midnight, respectively. For a better understand- 

ing, angular drift factors a re  shown. For radial distances < 3 R , ,  we observe a 

dipole-like dependence. Beyond 3 R e ,  there is a considerable departure. Drift  

velocities on the night side are indeed appreciably higher than on the day side. 

The peculiar inversion of the pitch angle dependence, occuring on the day side 

(Fig. 12a), is due to a shift in relative importance of curvature drift versus 

gradient drift (particles mirroring at high latitude experience more of a dipole- 

type field, and drift faster). 

In Figs. 13a and 13b we have represented the percentage change of the linear 

drift velocity of a given particle? when it drifts to the opposite meridian. A 
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in i t i a l l y  having equatorial p i tch angles of cosines 0.2, 0.4, 0.6, 0.8 and 1.0 respectively, w i l l  
appear on the midnight meridian w i th  cosines o f  p i tch angles given by the curves. Not ice the 
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Figure 1 Ib-Part ic les starting in  the midnight meridian a t  a f ie ld  l ine  reaching out to  R n o o n  
and in i t i a l l y  having equatorial p i tch angles of cosines 0.2, 0.4, 0.6, 0.8 and 1.0 respectively, 
w i l l  appear on the midnight meridian w i th  cosines of p i tch angles given by the curves. Not ice 

the ef fect  of alignment along the f ie ld  lines (occurring a t  midnight), for radial distances 2 5. 
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close inspection of the local time dependence of the drift velocity (not shown 

here) leads to the important conclusion that a given particle trapped in the outer 

meadosphere ( ? 6 R e )  spends up to 2/3 -3/4 of its total lifetime in the day side. 

In other words, there is always a higher probability to find a particle in the day 

side than in the night side. It can be shown that, as a consequence, particle volume 

densities can be about two times greater on the noon meridian, than at midnight, for 

a given class of particles. This represents an additional important asymmetry for 

trapped particle fluxes in the outer meadosphere. 

As discussed in Section 11, any pitch angle scattering mechanism will lead 

to radial diffusion, due to shell splitting. According to the preceding results, 

this radial diffusion will be most effective for equatorial particles. This mechan- 

ism would tend to mix and blurr energy spectra of particles at different radial 

distances. Furthermore, the existence of large pseudo-trapping regions, es- 

pecially on the day side, implies an efficient particle sink for any pitch angle 

scattering mechanism (enhanced loss cone). On the other hand, the reverse could 

also be true: particles which happened to enter the pseudo-trapping regions from 

outside, could be scattered into stably trapped orbits by any pitch angle scatter- 

ing mechanism. 

We now turn to the numerical results for a time-dependent magnetic field 

configuration. The purpose is to study the trapped particle behaviour during a 

simulated magnetic storm. Following steps were adopted a s  a "model" storm: 

1. sudden, non-adiabatic compression, simulated by a decrease AR of the 

parameter R (inward displacement of the magnetopause). 

2. optional sudden increase AB, of the tail field. 

3.  gradual, adiabatic recovery to the initial field configuration. 
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For (1) and (2) it is assumed that particles, while violating the thjrd invariant (8), 

stick to their original field line driven by the dominating ExB drift, still conserv- 

ing the first two invariants (this "original" field line is supposed to be rigidly 

rooted in the ionosphere, during the sudden compression). Par t  (4) of the 

computer code is applied for this calculation. The gradual recovery in (3) is as- 

sumed to be flux-conserving; part (5) of the computer code was used here. 

Some of the results a r e  summarized in Fig. 14, in which the percentage change 

of kinetic energy of a particle is represented as a function of equatorial distance 

of the initial field line, for different pitch angles, and for particles caught by the 

compression at noon (upper curves), and at midnight (lower curves). This energy 

variation is independent of the initial energy, and increases with the amount of 

compression ORs (taken = 2 R e  for the curves in Fig. 14). An inward motion of 

the boundary of only 1 Re would yield energy changes roughly 0.45 times those 

shown in the figure. The curves given in Fig. 14 were derived for a sudden com- 

mencement without a sudden increase of the tail field. If one adds a typical 

increase AB, of 15 gammas, acceleration, deceleration and radial displacements 

become greater by a factor of about 2, the effect being considerably enhanced for 

particles which were in the night side during the sudden commencement. 

One clearly sees in Fig. 14 that the final effect of a storm depends on where 

in local time the particle was caught during the non-adiabatic phase: particles 

which happened to be in the day side of the meadosphere will have a higher en- 

ergy when the field recovers to the initial state; particles surprised in the night 

side will be decelerated. Furthermore, the first group of particles will have 

moved radially inwards, whereas the second group will be found on shells "in- 

flated" outwards (Fig. 15). It should be pointed out that during the first phase of 
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compression, both groups of particles attain higher energies; it is during the 

adiabatic recovery, that this peculiar asymmetry arises. The fact that a given 

particle always spends more time in the day side, leads to the conclusion that a 

magnetic storm should always have a - net effect of inward diffusion and acceler- 

ation of trapped particles, after the field has recovered to the same initial con- 

figuration. We finally must mention that during a magnetic storm a considerable 

fraction of particles can be driven into pseudo-trapping regions of the meado- 

sphere, and therefore be lost through the boundary, or into the tail. This effect is 

particularly important for storms with increases of the tail field, which mainly 

leads to losses through the boundary on the day side. Likewise, particles which 

for some reason happened to be injected into pseudo-trapping regions during re-  

covery, can become stably trapped, under favorable circumstances of injection. 

The repeated action of magnetic storms will therefore cause acceleration 

and radial diffusion towards lower altitudes, of particles trapped in the outer 

meadosphere. This mechanism leads to energy spectra which depend on radial 

distance, hardening towards lower R values. This is indeed observed for pro- 

tons [Davis and Williamson, 1963; Vernov, Vakulov, Kuznetsov, Logatchev, 

Nikolaev, Sosnovets and Stolpovsky, 1966 1, and was explained theoretically by 

[ Nakada, Dungey and Hess, 19651. Electrons, however, should in  addition be 

subject to pitch angle scattering by electromagnetic waves; a s  discussed above, 

the radial diffusion which accompanies pitch angle scattering when shell splitting 

is considerable, should greatly blurr the radial dependence of energy spectra 

for electrons. 

IV. CONCLUSIONS 

1. Shell splitting in the outer magnetosphere becomes important beyond 5 

earth radii; dipole-type descriptions of the radiation belt become invalid. 
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2. Equatorial pitch angles tend to align along field lines on the night side 

of the magnetosphere, and perpendicularly to the field, on the day side. 

3. There a r e  regions in the magnetosphere, where only pseudo-trapped 

particles can mirror ,  i.e. particles which will leave the magnetosphere before 

completing a 180' drift. 

4. Longitudinal drift velocities depart considerably from the dipole values 

beyond 5 Re, and can be as much as 2-3 times greater on the night side than on 

the day side. Thus a given particle spends 2-3 times more time in the day side 

than in the night side. 

5. The action of a pitch angle scattering mechanism will lead to a radial 

diffusion of particles. The loss mechanism will be greatly enhanced by scat- 

tering of mir ror  points into the pseudo-trapping regions. 

6. After recovery from a prototype magnetic storm, particles which were 

in the day side during the sudden commencement will have higher energies, their 

shells having moved radially inwards. Particles caught in the night side will 

have moved outwards, with their energies decreased. 

7. The repeated action of magnetic storms will result in a net inward dif- 

fusion of particles, with a net increase of their energy. 
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APPENDIX I 

Listing of the program briefly described in the text. For more 
details, see the comment cards and the list of output which follows 
the listing. The deck is available on request. 
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LIST OF OUTPUT 

Initial field line: 

VN 1: Radial distance in earth radii to field line points 

O U T  latitude of field line points 

OLONG: longitude of field line points 

B: field intensity in gauss, at field line points 

SPITCH: cosines of equatorial pitch angles for a group of particles on the field 

line 

mirror  point field intensities for these particles 

corresponding values of second invariant (in earth radii) 

BDIM: 

FIDIM: 

SALT, SLAT, SLONG: coordinates of mir ror  points 

SPATH: half-bounce path (expression 13 in the text) corresponding to these 

particles (in earth radii) 

SDFUFT: geometric factors giving drift velocities of these particles (for con- 

version into cm/sec, see comment card) 

radial distance to the equatorial point of the field line EALT: 

EQB: equatorial B-value 

ENERGY: kinetic energy of the particles, in units of r e s t  energy 

FLX: magnetic flux subtended by the shell generated by the particles (in 

gauss (earth radii)2) 

New field line (at a different longitude (splitting), or at the same longitude after 

the simulation of a storm). 

VN1, O U T ,  OLONG, B: same as above 

RPITCH, RALT, RLAT, RLONG, RPATH, RDRIFT; same as SPITCH, SALT, e t C .  

EQALT: radial distance to the equatorial points 

EQBB: equatorial B-values 
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Q G = C / E O B  
S P I T C H (  l)=SQRf; l.-EQB/BDIM(l)) 
S A L T ( l ) = A L T  
S L A T (  1) = F L A T  
SLONG (: 1 = F L O N G  

C A L L  I i J V A R  ( V Y ~ ( N ) , V Y Z ( N ) , V N 3 ( N ) 1 E R R I B Z I F I Z )  

I F  (EALT.GT.12. )  GO T O  1 

a=\. . 3 1 /  ( R D I P U L * * 3 .  

A 57 
A 56 
A 59 
A 63 

A 62 
A 63 
A 64 
A 65 
A 66 
A 67 
A 68 
A 69 
A 7c 
A 7 1  
A 7 2  
A 73 
A 74 
A 75 
A 76 
A 77 
A 78 
A 79  
A @ o  
A 8 ;  
A 82  
A 83  
A 84 
A A5 
A 86 
A 87 
A KB 
A R9 
A 90 
A 91  
h 92 
A 93 
A 94 
A 95  
A 96 
A 97 

A 99 
A 100 
A 101 
A 102 
A 103 
A 104 
A 1 0 5  
A I D 6  
A 107 
A 108 
A 199 

A 42 

A ga 

A 1 x 1  

LCGP T O  D E T E R H I N E  A L L  I - E M  P O I N T S  ON THE I N I T I A L  COCHON F I E L D  L I N  A 11: 
CORHESPONDING T O  E Q U A L L Y  SPACED V A L U E S  OF C ' O S I P I T C H  ANGLF) A 112 
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C 

7 
8 

9 

:a 

11 

i2 

A 113 
I F  (KMAX.EG.:) GO TO 8 A 114 
DO 7 K = Z * K M A X  A 115 
C O S P I T s C O S P I T - C C C S  A 1 1 6  
S S P = L . - C O S P I T * C C S P I T  A 117 
IF ( S P I  T C H  ( 1 .LT.COSP I T  I S I O = l  .-SP I TCH ( 1 I *  SP I TCH (1 A 113 
B O = E E E / S S U  A 119 
C A L L  BE S F C  T ( DtJM 1 t GUM Z 9 GUM 3 9 B A L  T 9 EL A T  9 E L U N G  9 ERR 1 1 A 12c 
J J= J U P -  1 A 12: 
C U K i z V  J l ( J J )  A 1 2 2  
D U F I Z = V ~ L  ( J J 1 A 123 
D U I ; 3 = V N 3 ( J J )  A 124 
S A L T ( K ) = V d O I l )  A 1 2 5  
SLAT(K)=9~1 . -VBC(Z)c57 .29577957795  A 120 
SLCNG(K)=VEO(?)*57.?957795 A 1 2 7  
I F  ( S L O N C ( K ) . G T . I R (  . I  S L O l v G ( K ) = S L O N G ( K ) - 3 6 ~ : ' .  A 128 
I F  ( S L ~ N ' ~ ( K ) . L T . ( - l d 3 . ) )  S L O N G ( K ) = S L O N G ( K ) + 3 6 C .  A 129 
C A L L  I t * V A R  ( V B O (  L 1 ,  V D O (  2 ) r V S ( J (  3 1 ,ERR 9 B D I M (  K )  9 F I O I M  ( K )  1 A 1 3 3  
N = 4  A 13i 
I F  ( J U P . L E . 4 )  '.=? A i32 
C A L L  1I':VAR ( V N 1  ( h )  9Ve\IZ(N r V N 3 ( l r )  t E R K 9 B Z r F I  2 1 A 1 3 3  
S P A T ~ I K ) = F I D I M ( K ) + ( F I D I M ( K ) - F I ; ) r Z . + B D I M ~ K ) / ~ B D I ~ ( K ) - ~ ~ )  A 134 
S P I T C H ( K ) = S Q R T ( l . - F Q B / B D I M ( K ) )  A 135 
C O h T  I i U t  A 136 
E R R = E R @ * 4 ) .  A 137 
ERR:=ERH*S. ?i),: 5 A i3M 
ERKZ=EKR* l ,  . 3 2 5  A 139 

L D C P  T O  D E T E H M I h E  D R I F T  V E L O C I T Y  ON T H E  I N I T I A L  L I N E  A 14i 
T O  D E T E K F I I Y E  E Q U A T O R I A L  D R I F T  V E L O C I T Y  I N  C M / S E C  M U L T I P L Y  D R I F T  B Y  A 1 4 2  
2.5766 E 5 5  ( K C I P U L * * 3 )  ( M A S S  I N  E L E C T R O N  P A S S E S )  ( G A P M A )  A i43 

(BETA**;) . O E T A  = V/C.  A 144 
A 145 

DO 9 K = l p K M A X  A 146 
F I S T A R = F I D  I M (  K )  * ..98 A 147 
O A L T = S A L T ( K )  d i48 
D L A T = S L A T  ( K 1 A 149 
G L C N G = S L @ N G ( k )  A L ~ J  

1) 4 1 5 2  
I F  (KK.GT. . < )  GC T U  9 A 153 
C A L L  E U U A T  (V iVEAR(  1 ) 9 V N E A K (  2 ( V N E A R  ( 3 9 E B t  E A L T I E L A T  9 E L C N G v  E R R 1 1  A 154 
C I S T = A B S  ( V N E A R  ( 1 - V N  11 A 1 5 5  
S G R I  F T  ( K ) = - (  F I S T A R - F I D I M ( K )  ) * O O / ( D I S T * S t ' A T H L K )  1 A 156 
C O n T I W C  A 157 
GO L ;  K = ? * K M A X  A 158 
IF I SDR I F T  ( K  1 .LT. 1. E - 1 ~ 5 )  S P A T H (  K )="e A 1 5 3  
CONT I Y U  k A i o 2  
WRIT; ( t . 944 )  A 161 

lS A L T ( K ) , S L A T ( K ) , K = K M I V , K M A X )  d 163 
I F  LNOSPLT.EG.1)  GO T O  24 A 164 
C O N 1  I NU E A i 6 5  
FLCNG=URLONG A 166 
K A S F = i  A 167 
DO 1 3  K=:,KMAX A 168 

A 14d 

C A L L  S E A R C H  ( D ~ L T , G L A T , O L O I ~ G ~ D D I M I K ) , F I S T A K ~ B R ~ F I S T A ~ ~ ~ ~ ~ F I , ~ R R ~ ~ R ~ ~ ~ E R R I ~ K R  A 15A 

k R I T E  ( 6 9 4 5 )  ( K ~ E D I M ( K ) , F I D I M ( K ) r S P I T C H ( K )  , S D R I F T ( K ) , S P A T W ( K ) r E g S I  A 162 

4 1  



i 3  
C 
C 
C 
C 

;4 
15 

16 

17 

' -9 

A I69  
A i7.1 
A 17: 
A 172  
A 173 
A 174 
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C LOOK S t A R C H E S  FCR T h E  S H E L L  P A V I N G  A P R E F I X E D  VALUE OF THE 
C T H I R C  I N V A R I A N T ,  C C M P A T I B L E  N I T H  C O N S E K V A T I O Y  OF THE OTHER TWO 
C 

C A L L  LOOK ( S A L T ( K ) , S L A T ( K ) , S L O N G ( K ) ~ S ~ ~ I . I  F L X ( K ) , R D I M ( K ) , F I D I  

F I S Q = F  I D IY( K 1 + F  I C  I P (  K )  
GAMNEW=SGKT( : . + C t N S T / F I S O )  

l M ( K ) , E R R ~ F R K I , F R H B ~ E ~ ~ F ~ P H I ~ K L 0 S T T ( K ) I  

ErdCRGY ( K ) = G A M N E W - ? .  
26 C G N T I N U F  

W R I T L  ( 6 9 5 3  1 FKCNT,  S H E E T 1 9  F S t i E E T  
IF ( ~ L [ J S T T ( I ) . G T . ~ . ~ )  GO TU l i  
ALT=SALT ( 2 )  
F L A T = S L A T  ( 2  1 
GCi T U  1 1  

2 7  CYLChG=OKLCYG+iB; .  
KOFITRL= 3 
I F  ( N C S P L T . E C . 1 )  GO TO 3a 
GU TL 1 i  

2 a  COtdT I Y I J E  
O K L C N G - O R L O N G t r  E L T A  
I F  ( C N L O Y G . ~ T . T E H M )  GO TO 3 8  
FLCNG=URLGNG 

AL T = R A L  T ( ! ) 
F L A T = R L  A T  ( L 1 
GG T U  > 2  

I F  ( t < L U S T T ( l ) . G T . t : . 5 )  GO TO 1? 

r 
L 

C 
C 
C 
C 
2 9  

31 

31 

32 
33  

P O I N T S  H A V I Y G  T I - €  P R E F I X E D  V A L U E S  O F  C O N S T = ( I * * Z ) * ( G A M M A * * ~ - l . )  
ANC ( I * * Z ) * f l I A K E  D E T E R M I N E D  ON THE D I S T O R T E D  
F I E L C  L I N E  

F I = F I G I M ( i )  
@ B = 8 C I i . 1 ( 1 )  
F I S d = F I * F I  
C O h S T = F I S O * G S Q M L  
C O C P = F I S O * R B  
K M I  N=Z 
K = K M I N  
F I S C = F I  D I M ( K  ) * F  ICIC(K 1 
CONST=F ISO*GS-CMl  
S Q B I  = B D I M ( K  1 *F I SO 
I F  ( C O M P . I - T X Q @ ^ n ’ . G O  TO 36 
I)O 3 2  J Z 4 t J U P  
I F  ( U ( J ) . G T . U ( 3 ) )  GO TO 3 3  
CONT I U l E  
J U P =  J-: 
I F  ( J U P . L E . 4 )  S T O P 1  
S l = V h l l 2 )  
S i = V i U Z (  2 1 
S3=Vl \ r3 (  2 1 
S I = F I  
S C 0 M P = t, 0 M P 

V N I ( J I = V N i ( J + l )  
DG 3 4  J = l ( J I J P  

A 281 

A 203 
A 284 
A ,?E5 
A 286 
4 2 8 7  
A 28A 
A 2 e 9  
A 29c  
A 2 9 1  
A 292 
A 7 9 3  
A 294 
A L 9 5  
4 236 
A 2 9 7  

A 2 9 9  
A 303 
A 3 ‘ ? i  
A 3812 
A 3 2 3  
4 3 , : 4  
A 3.J5 
A 3?6 
A 36J7 
A 3 i i 8  

A z e 2  

A 298 

A 311  
4 312 
A 313  
A 3 1 4  
A 3 1 5  
A 316 
A 3 1 7  
A 3 i 8  
A 3 1 9  
A 32iS 
A 3 2 1  
A 322  
A 3 2 3  
A 324 
A ? 2 5  
4 3 2 6  
A 3 2 7  
A 328  
A 329 
A 3 3 3  
A 3 3 1  
A 3 3 2  
A 3 3 3  
4 33‘ 
A 33f 
A 336 
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WUS ( J l - V \ I L  ( J t 1  I A 3 3 7  
V t i  Z ( .J I =VI42 ( J t 1 I A 3 3 8  
L 7 (  J I = E (  J+: A 3 3 9  
B L C G ( J l = A L O G ( B ( J ) )  A 3 4 5  

34  A K C ( J ) = b R S ( A R C ( J t l ) l  A 3 4 1  
JCP=Jili. '-j. A 3 4 2  
OC; 35 J=;,JCP A 3 4 3  
A S I J P = A k C (  J 1 t A K C (  J t 1 )  A 3 4 4  
D X = B L C G ( J - l I - R C O G L J l  A 345 
L : % =  4SUb!*  A* C ( J I * A ii C ( J t 1 I A 3 4 6  
H C C = ( ( ~ L U G ( J - i l - P L O G ( J t ~ l ) * A ~ C ( J l * * ~ - D X * A S U M * * ~ ) / D ~  A 347 
C C L = ( C X * A R C (  J + ;  I - (  R L C G (  J I - h L C G (  J t 1 )  l * A D C ( J l  ) / D N  A 3 4 8  
SA=.7J*AYC( J )  A 3 4 9  
S C = j f i + .  Z ~ U A S I J ? . ?  A 3 5 2  
DCL'=PLOG( J -1  l - C C C * S C * S C  4 3 5 1  
E C C (  J I =  BCG+CCcl* ( S B t S C ,  1 A 3 5 2  
B t G ( J l = F X P ( D C U + E C O ( J l * . 5 * A ~ C ( J ) l  A 3 5 3  
EIEivC ( J I = E X  P ( D C G t  E C L ;  ( J I .5* ( A SIJF! t A k C  ( J 1 I I A 3 5 4  
~ E G ( J U i ' l = H E Q P ( J t P  A 355  
R E ~ U C ( J C P l = B ( J U P l  A 3 5 6  
E C C ( J Y P 1 = ( 2 . ,  / A K C ( J U P l l + A L U G ~ R E ~ D ( J ~ P ~ / B ~ G ~ J U P l l  A 357  
C A L L  A 3 5 8  
F I = F L I  .li A 353 
B o = ? ( : )  A 36: 
F I S L = F I - * F I  ' A 3 6 1  
C O M P - F I  SOaRH A 362 
20 Ti; 3 1  A 363 

2 5  S L C P C = (  SL'B I -SCt iF^P  I / ( CUMP-SCOPP I 4 3 6 4  
S A L T ( K I = S 1 + ( V N L ( , l - S l ) r S L O P E  4 365 
dV2 ( K I = S Z +  ( V h 2 (  I I - S L  I *SLUPE A 366 
G V  > ( ic = S 3 t ( Vi," 3 ( f I - S  A 367 
S I = S I + (  F I - S I  ) * S L C P E  A 368  
S L A T  ( K ) ='I 1 .  -C;V L- ( K I * 5 7.295779 5 A 3 6 9  
S L C NL ( K I = : jV 3 ( K I * 5 7 .  ;9 5 7 7 9 5 A 373 
I F  ( S L U N G (  K l  . G E .  i s ' .  I S L O N G (  K 1 = S L O N G ( K  1-36;. A 3 7 :  
I F  ( S L O ~ G ( K ) . L T . - i P " . I  S L U Y G ( K l = S L O N G l K ) + l 8 3 .  A 372 
F I S G = S I * S I  A 373  
G4bNEW=SORT ( 1. + C t N S , T / F  I S u  A 3 7 4  
E N E I ~ G Y ( K I = ~ A I i N ~ k - l ,  A 375  
F I C : I f * i ( k l = S I  A 376  
S I T = L R S  ( 5  1 1 \ 1 (  Q V i  ( K  I 1 1  A 377 
C A L L  K C  C. :4 A G A 3 7 8  
B D I P ( K l = H E B  A 3 7 9  
K = K t  1 A 3 8 0  
I F  (K.LE.KM.AX1 GC T O  3:: A 381 

DO 37 K=KMI 'J ,KMPX A 393 
K L O S T T (  K I =+:. A 3 8 4  

1 K l ~ F L X ~ K l r E R R t f 9 R B ~ E R R I , K L O S T T ~ K l ~  A 3 e 6  
37 S P I T C H ( K ) = S Q R T (  i . - E O H / B D I M ( K I  1 A 387  

N R I T E  ( 6 9 5 4 )  A 388  

l A L T  ( K l ,  S L A T ( K  I c K = K M I N t K M A X l  A 390  
ERR=kRi7*4:. A 3 9 1  
C RK L = Z R K  * 3 . ;  '1 i 5 A 392 

33  

I d T  : G ( A K C  t I: E G t R E  h! D t  B 7 J E P t E C O  , F L I N T I 

* S L  OP E 

( S A L T I K I 9 S I T , biV 3 ( K I t BR * B T t R P  t 8 B t3 t Q V 2  ( K 1 I 

C A L L  E U U A T  ~ V ~ ~ A R l ~ ) ~ V N E A K ~ 2 I , V N F A R O , E O R I E A L T ~ ~ L A T ~ E L O N G t E R R l I  A 3 8 2  

CALL F L U X  ~ F A L T ~ E L A T ~ E L O N G , S ~ L T ~ K ~ ~ S L A T ~ K ~ . ~ S L O N G ~ K I ~ B D I M ~ K ~ ~ F I D I M ~  A 3 9 5  

W R I T E  ( 6 i 4 5 )  ( K ~ C D I M ( K ) , F I D I M ( K ) t S P I T C H ( K I ~ F L X ( K )  r E N E R G Y ( K ) p E A L T , S  A 3 8 9  
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3 8  

C 
C 
3 9  
4 G  
41 
4 2  
4 3  
4 4  

45 
4 6  
4 7  
48 

49 
5@ 

5 1  
5 2  
53 
5 4  

ERhL=EKK* ' r  - 3 2 5  A 393 
A L T = S A L T  ( 2 1 
F L A T = S L A T  ( 2 I A 3 9 5  
F L C N G = S L G N G [ Z l  A 396 
I F  ( N C S P L T . E P . 1 )  GO TO 25 A 397 
GO T O  11 A--3-9 8 
E K R = E R H * 5 . ? 2 5  A 399 

._ A 401- 

FORMAT (4F1).41 A 4 0 3  

FOkMAT ( 2 9 H  OISTOKTED COMMON F I E L D  L I N E / 4 5 X t 3 F 1 5 . 2 / / 1  A 405 

FORMAT ( 1 5 t F 1 5 . 4 t F l ~ . 2 t F 1 5 . 2 t € Z U . 5 1  A 407 
FORMAT ( l X / / / 2 X ~ l H K ~ 9 X , 4 H B D I M , ~ 2 X , 5 H F I D I M t 9 X t 6 H S P I T C H ~ 9 X ~ 6 ~ ~ D ~ ~ ~ F T ~  A 408 

1 9 X v 5 h S P A T H t 1 1 X t 4 k E Q B  t 9 X * 4 H S A L T t 4 X t 4 H S L A T / l  A 409 
FORMAT ( 1 3 , F 1 5 . ~ , 4 F : 5 . 4 , F L 5 . 6 t 5 X t Z F 7 . 2 / / / )  d 410 
FOPMAT ( / 2 7 H  S P L I T  F I E L D  L I N E S / I 2 t 3 t F i 9 . 3 / ) -  A 411 

a -394 

GO TL 1 A T E -  

a 4 ~ 2  

FORMAT ( I 5 t 3 F l f ' . 2 1  a 4 0 4  

FOKMAT ( l X / / / / 2 7 H  I N I T I A L  COMMON F I E L D  L I N E / 4 C ' X , 3 F l 5 . i / / I  X' 4%' 

FORMAT (1X/ /5* .1Xt  5F( ,O.2 / /  I 3-4 19 
FURMAT ( 2 X  t l H K ,  9 x 9  4HRDIMq l Z X t  5 H F  I O I M p 9 X * 6 H R P I  T C H t 9 X t 6 H R D R l F T t 9 X t 5 H  A 413 

l R P A T H , l i X t 4 H E Q e @ t 9 X , 4 H R A L T , 4 X t 4 H R L A T / )  A 414 
FOKMAT ( 2 A X t i 6 H S k E L L  S P L I T T I N G  P A H A M E T E R S / / l  A 4 1 5  
FOHNAT ( 2 X t 1 H K , 4 X , 6 H E Q L O N G t l ~ X , l l H E A R T H  R A D I I t 1 6 X t 9 H C O S  P r l C H 9 t 3 X ;  A 416 

1 ? 4 H D h I F T  V E L O C I T Y t 1 3 X t 6 H E N E R G Y / I  A 4 1 7  
FORMAT 8- 41 e- 
FURCAT (7X/ / ; '7H W I N D  AND STORM ARE R A G I k G / 5 9 X t 3 F 2 C . 2 / ) -  A 419 
FOKMAT ( Z X / / Z l H  SPACE IS C A L M  A G A I N / 5 L X v 3 F 2 3 . 2 / 1  A 4226 

19Xt5HENERGtliXt4HEALTt9X,4HSALl~4Xt4HSLAT/l A 422 

( I 3 t F l C . Z t 5X t 2 F 13 .3  t 5 X-t 2 F 117.3 * 2 E 15.3  t F 14.6 I f7T 

FORMAT ( 1 X / / / 2 X ~ 1 H K t 9 X t 4 H B D I M ~ l 2 X ~ 5 H F f D I M ~ 9 X t 6 H S P I T C H ~ 9 X ~ 6 H  F L U X  A 421 

ElvC A 4 2 3 -  



SUBRCUT I N E  S E A R C k  I ALTvsFLATvFLONG,SB+SIvBB,FI IERRtFRRBIERRBERRI  r R L O S T )  R 1 
COMMON U ( L ~ ~ ) , V N ~ ( I Z ~ ! ' J ) , V N Z ( ~ ~ : ~ ) ~ V N ~ ( ~ ~ C ) ~ A R C ( ~ ~ C ) , V N E A H ( ~ ) , V E U ( ~ ) ~  B 2 

I V S A V E ( 3 ) * B O v P N E A R r J U P i N # M  B 3  
COMMON FRONT~SHEET1,SHEETZtFSHEET B 4  

C 8 5  
C S U B R C U T I N E  D E F I N E S  F I E L D  L I N E  G O I N G  THROUGH P O I N T  GF- PREFi ,XED B 6  
C B A h 0  SECOND I N V I R I A 2 1 T  I A T  A G I V E N  L O N G I T U D E  3 7  
C a s  

D I M E h Z I O t l  V ( 3 ) c  V l ( 3 ) i  V 2 0 :  3 9  
DV=ci. 22 B 1 5  
RLOST=2 .  b 11 
MC H E C K= 3 B 12- 
I C H C C K =  1 B 13  
SEKR=ERR B 14 
SESI(C=Et(RE! i3 ?5 

V (  L ) = A L T  R 17 

V ( 2 ) = ( ~ ~ . - F L A T ) / 5 7 . 2 9 5 7 7 9 5  B i9 
V ( 3 ) = F L O Y G / 5 7 . 2 9 5 7 7 9 5  9 2 3  
O C L T = l .  J 7 i 8  B 2 1  
I C O i \ l = l  €3 22  

1 I L I T = l  B 23 

I C H E C K = I C H E C K + :  B 2 5  
IF ( I C H E C K . G T . ~ J )  GO TO 12 B 26 

2 S I T = A B S  ( S I N (  V ( 2 ) 1 )  B 27 
C A L L  MUDMAG ( V ( l ) , S I T r V ( 3 ) , B R , B T v B P v R B v V ( 2 ) )  R 28 

2 FAC=; . - (SB-BB) / I3 . *SH)  B 29 
I F  (FAC.GT.1.5) FAC=1 .5  B 35 
I F  ( F A C - L T  . " .606 1 FAC='I. b b b  0 3 1  
V (  1 ) = V (  1 ) * F A C  B 32 
I F  ( ( V ( ? ) . G T . l L J . ) . ~ R . ( V ( L ) . L T . C . 5 ) )  GO T U  11 E 33 
V l ( 1 )  =v ( 1 1 B 34 
V 1 (  2 1 = v  ( 2 1 B 35 
MCHECK=MCHECK+l  B 36 
I F  (hCHECK.GT.15 )  GO TO 1 3  B 37 
C A L L  MOOMAG ( V ( l ) ~ S I T t V ( 3 ) r B K t B T 1 B P 1 B O , V ( 2 ) 1  R 38 
IF (ABS((BR-SB)/SB).ST.ERRR) GO 70 3 E 39 
MCHECK= J 8 43 
I F  ( I L I T . Y E . 1 )  GG TI) 7 5 41 
I L I T = 2  B 42 
C A L L  I ?JV AR ( V [ ) 9 V ( 2 ) V ( 3 1 9 ERR t B B  9 F I ) B 4 3  
IF ( J U P . L T . 2 )  GO T O  14 B 44 
V Z ( l ) = V ( l )  B 45 
V Z ( S ) = V  1 2 )  8 46 
BZ=BB B 47 
F I 2 = F I  B 48 
I F  (ABS((FI-SI)/SI).LE.ERRI) GO TO 8 B 49 
IF ( A B S ( V ( Z ) - D C L T ) . L T . l i . L )  GO TO 6 R 53 
S G N = S I G N ( l . v I F I - S 1 ) )  B 5 1  
IF ( V L Z ) . L T . D C L T )  GO T 3  4 B 52 
D E L V i = - S G N * O E L V Z  B 53 
GO T C  5 B 54 

4 D E L V Z = S G N * O F L V Z  B 55 

S E R R I = f R & I  B l b  

I F  ( V ( l ) . L T . ? . 5 )  GO T O  11 t3 l a  

DELVL=DV R 24 
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1 

2 

3 
4 

5 

6 

7 

8 

9 
C 
-13 
11 

S U B R U U T I N E  L 3 0 K  l A L T t F L A T e F L O N G * S Q B I r  T H I R D  t BPTI R i  F f Mf R 9 ERi%-t?R C‘ 1 
c 2  

COMMON H ~ 2 ~ 3 ~ ~ V N 1 1 2 i ~ ~ ~ V N 2 1 2 ~ ~ ~ ~ V N 3 ~ 2 3 ? ) 1 A R C 1 ~ ~ ~ ~ ~ V N E A R 1 3 ~ ~ ~ ~ 0 1 3 ~ ~  C 3 
c 4  

COMMCN FRONT, S H E F T I + S H E E T Z t F S H E E T  c- 5 
I F  ( T h I K D . L E . 1 . )  GO TO 7 C 6  
ERRi=ERR*O.C;  ‘E t 

C 8  C U T L = d .  
I C L l l  P. T = ., c 9  
CONT I NU C c 10 
C A L L  ’5E ARCH f AL T t F L A T  9 F L O N G t  BM I R t F I M  I R  t BB t F I * E R R  ( E R R 1  r E R R B t R X I  2 11 
I F  lKH.GT.C+.5) GC TO 7 c 12 
C A L L  EUUAT l V N E A R l i ~ t V N E A R l 2 ) ~ V N E A R o  ; E Q B , E A L T t E L A T ; l ~ N ( ; ; ~ ~ ~  ’2: 33 

l C U T  1 C 1 5  

1 R I  t E R R B t  ERRF, P H I  t C U T L  1 

l V S A V E  I 3  1 t B O P  BNEAR t J U P t  MMM 

- __ 

C A L L  F L U X  ( EALTtELATtELONGtALTrFCATIFLATtFLONGtBBpFI * P H I  tERR*ERRB,ERR_I_. 5 12 - 

I F  l C U T . L T . 3 . 5 )  GO T U  Z 
I F  ( I C b U N T . E Q . 7 )  GO TO 7 
FAC=FAC*c>. 5 
F I I ” I K = F O L D  
GO T U  3 
D P H I = T H I K G - P . h I  
I F  [ABS(OPhI/THIRD).LE.ERRF) GO TO 9 
I F  l ICOUNT.GT. * ’ )  GO T O  3 
FAC=-l./I12.56*EALT*EQB) 
GO TL 4 
F AC= I F U L  G-F I M I R 1 / L POL D-PH I 1 
F O L O = F I M I R  
P O L C = P H I  
S U M = C P H I * F A C  

I F  
FAC=FAC*:.5 
GO TC 5 

I F  l A B S l S U M / F I M I R ) . L T . ~ . l )  GO TO 6 
( ABS I S U M I F  I M  I R  1 .GT. 15.T?Ac%iC+.fa 

F I M  IK=F I M I  R t S U M  
F i S C = F I H I K * F I M I R  
B M I R = S Q B  I /  
f C G U N T =  I C O U N T + T  

GO T L  

C U T L = l .  

I F  ( I C O U N T . E C . 9 )  GO 

W R I T E  (6rlG) 

.F I SQ 1 

T O  a 

GO TO 9 

C U T L = i .  
RETURN 

F O R M A T  ( 2 4 H  - N O T  A C C E S S I B L E  I N  LOOK)  
FORPAT 1 3 9 H  I CANNOT F I N D  T H A T  DAMN S H E L L  I N  L O O K )  
tf ND 

W K  ITE t 6 t 1-11 

- C &  
C 17 
c 1 8  r fZT 
c 20 
c 2 1  

_- 
c 22 
€ 23- 
C 24 
-t- 2Y 
C 26 r-27 
c 28 
c 23  
c 30 
‘ZTn 
C 32 
7 3-3- 
c 34 
c- 32 
C 36 
T J 7  
C 3 8  
T 279 

C 40 
T 41 
c 42 t - m  
c 44 

49 



SUBRCUT1;dE F L U X  ( X E A L T ~ X E L A T i X E L O N G , X A L T ~ X L A T ~ X L O N G , B M I R ~ F I M I R i T H I  
l K O , E K R i E R R R , E R 4 I , C U T )  

1 V S A V E  ( 3 1 ,  R O i  RI\IEARi J U P i  M M M  
COMMCN H( 2r 1 )  , V N 1 (  20 1 ,  V N Z (  2C: , V N 3 l  Z C L  ? A R C  2.30) , V N E A R (  3 , V B O (  3) e 

COMMON F A O N T  9 SP'cET 1, S H E E T 2 r  F S H F E T  
C U T =  4. 

T H I R D =  . 
K OU NT = _  
C A L T = X E A L T  
ELAT=X:LAT 
ELChlG=X ELONG 
S A L T X 4 L T 
S L A T = X L A T  
S L C N G = X L  CNG 
E R K  l = E R R * > .  71 
O L = 3  
C A L L  V E C P O T  ( E A L T p E L A T , E L O N G , A P I ' I )  
S 1 =  E ALT *APH I 
5 O= S L C N  G / 5 7 .  2 9 5 7 7 9 5 

1 I F  ( S C )  Z 1 3 , 3  
2 S O = S C + b . 2 3 3 1 6 5 3  17 

GO TC 1 
3 I F  ( S C - L . 2 9 3 1 8 5 3 : 7 )  5 , 5 1 4  
4 S D = S L - b . 2 9 3 ; 8 5 3  I7 

GO TC 3 
5 CONT I V U  E 
6 S L C Y L = S L O i I G + O L  

K OU NT = K  UUN T + 1 
I F  (KCUNT.GT.6) GO T O  1 3  

I F  (HH.GT.ct.5) GC T U  1 2  
C A L L  S F A R C H  ~ S A L T ~ S L A T ~ S L O N G ~ B M I K ~ F I M I R , B B 1 F I ~ E R R ~ ~ R R B ~ E R R l i R R ~  

C A L L  EWUAT ( V [ \ I E A R I  1 )  i V i . I E A K l 2  1 i V N E A R (  3 )  , E Q B s E A L T  t E L A T , E L O N G * E R R l  
C A L L  VECPOT ( E A L T , ~ L A T , E L O Y G i A P H I )  
S Z = E I L T  * A P H  I 
SSO=VNEAR(  3 )  

7 IF ( S S O )  8 1 9 1 9  
8 S S O = S S G + 6 . 2 9 3 1 9 5 3 9 7  

9 I F  I S S O - 6 . 2 9 3 1 6 5 3 3 7 3  l l , l l t i <  
1J S S D = 5 S D - o . Z 9 3 1 R 5 3 G 7  

1 1  COhrTI lLUE 

GO Ti; 7 

GO TU Y 

D E L = A B S  ( S S D - S D 1  
so=ssc  
T H  I R C x T H  I R E +  ( SI + S 2  I *DEL*C. 5 
s1=s: 
GO TC o 

1 2  W R I T E  ( 6 9 1 4 )  
CUT=,. 

13  RETUHN 
C 
1 4  FORMAT l 2 2 H  I N I C C E S S I B L E  I N  F L U X )  

ENC 

0 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
0 
0 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
D 
0 
D 
0 
n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13  
14 
1 5  
16 
17 
18  
19 
2 3  
21 
2 2  
2 3  
2 4  
25 
2 6  
27 
2 6  
29 
3 )  
3 1  
32 
3 3  
34 
35 
36 
3 7  
38 
39 
45 
41 
42 
43 
4 4  
45 
46 
47 
48 
49 
5" 
5 1  
5 2  
53-  
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S U B R C U T I N E  V E C P C T  ( R 0 , E L A T t E L O N C V A )  N l  
COHMCN B ( 2 ~ 3 ) t V N l L i C : ) 9 V N 2 ( 2 ~ ~ ~ , V N 3 ( ~ ~ ~ ) ~ A R C ( 2 ~ ~ ~ 9 V N E A R ( 3 ~ 9 V B O ( 3 ) ~  N 2 

~ V S A V E ( ~ ) * B O , B N E A R I J U P ~ M M M M  N 3  
COPHON FRONTtSHEETlrSHEET2,FSHEET N 4  
Axw.31  N 5  
O N G = E L O N G / 5 7 . 2 9 5 7 7 9 5  N 6  

1 I F  I C N G )  2 , 3 9 3  N 7  
2 ONG- C ?iG + 6.2 4 ? 1 8 5 3 0 7 N 0  

GO TC 1 N 9  
3 IF ( O N G - 6 . 2 9 3 1 P 5 3 C 7 )  5 9 5 9 4  N 10 
4 ONG=GNG-t . i93;85307 iu 11 

GO T O  3 N 12 

R = l .  N 14 
UV= ( RO-1.1 **I .C# 5 N 15 
RZ=H+DV*C. 5 N 1 6  
V L A T = ( 9 i J . - E L A T ) / S 7 . 2 9 5 7 7 9 5  N 17 
S I T = A @ S ( S I N ( V L A T ) )  N 1 8  

6 C A L L  MOCKAG ( R 2 , S I T , O N G ~ B R 9 B T r R P , @ B ~ V L A T )  N 19 
A=A-A@S ( BT 1 +RZ*CV N 20 
R2=RZ+OV N 2 1  
IF (R2.GT.RO) GC TCi 7 N 22 
GO T C  6 N 2 3  

7 A=A/RO N 24 
R E T U R N  N 2 5  
END N 26 

5 CCNT 1 NU E N i 3  
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SUBHOUT I NE EOUAT [ CUM 1, OUMZ 9 DUM 3 t EB E A L T  t E L A T  r E  LONG * E R R )  E 

l V S A V f ( 3 ) e B O i R N E A R ~ J U P r M M M  E 
COMMON FRONT,SHEETl,SHEET2,FSHEET E 

C E 
C SURRCUTINE TRACES F I E L D  L I N E  FROM A G I V E N  P O I N T  TO YININUM 6 E 
C M I N I M U M  R POCKETS AT H I G H  L A T I T U D E S  ON NOON SIDE ARE 1GNORED E 
C E 

O I M E h S I O N  V ( 3 r 3 1 ,  V N ( 3 1 9  V P ( 3 1 ,  R 1 ( 3 ) ,  R 2 ( 3 ) *  R 3 ( 3 )  E 
EAR:=ERR E 
MtdN=; E 
JUP.1 E 
V ( 1 t 2 ) = D U M  1 E 
V ( 2 , 2 )=DUM 2 E 
V I  ?. 9 L ) = D U M 3  E 
A R C  ( 1  )=C. E 
CCLT=1.57Clf !  E 

1 A R C ( . ?  ) = V (  1 1 2  ) + S C R T (  ERR ) * d e 3  E 
I F  ( V ( L , Z ) - D C L T )  2 , 3 8 3  E 

2 A R C  ( 2  ) = - A R C  ( i 1 E 
3 C A L L  S T  A R T  I R l r  R i c  R 3 1 8 1  ARC, ERR, V I  E 

IF (JUP.LT.I) (;a T O  5 E 
oci 4 1 = 1 , 3  . E 
V P I I ) = V (  1,21 E 

4 V N (  I ) = V  I I t 3 1  E 
C A L L  L I N E S  ( R ~ , R Z ~ K ~ ~ B , A R C , E R R I J ~ V P I V N )  E 
I F  ( J . L T . 2 q . j )  GO TO 7 E 
E R H = 4 . + r R R  E 
GO TLj t E 

5 J I I P = l  E 
E H R = t R K * t . .  1 E 

6 CONT I NU E E 
W K I T E  ( & , a )  E R R  E 
GO T L  1 E 

7 E R R = t R K i  E 
E B= B N  E AR E 
E a L T = V h E A R  11 1 E 
E L A T = 3 i r .  -VNEAR(  2 )*57.2957795 E 
ELONG=VNEAR ( 3 1 + 57.2957795 E 
I F  ( t L D N G . t i T . l E C . )  E L O N G = E L O N G - 3 6 0 .  E 
I F  ( E L U N G . L T . L - l P C . ) )  E L O N G = E L O N G + 3 6 9 .  E 
RETURN E 

C E 
C E 
6 FORMAT Ii4H E R R C R  CHANGED I N  E Q U A T r E 1 5 . 4 7  E 

ENC E 

COhMUN B (  20:) 1 c V N 1 (  20; I p V N 2 (  20@ I ,  V N 3 (  200) (ARC ( 2 0 0 )  r V N E A R ( 3 )  e V B O ( 3 )  t E 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
1 5  
16 
17 
1 8  
19 
20 
21 
22 
2 3  
24 
z s  
2 6  
27 
28 
29 
30 
3-1 
32 
33 
34 
35 
36 
37 
38 
?s 
40 
GI 
42 
43 
44 
&-5 
46- 
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SURKUUT I N E  RESECT 1 kUMi, KUM?,KCIM?, B A L T  , B L A T , R L O N L * C H R )  F i  
F 2 
F 3  

CCIYPCN F R O ~ ~ T , S ~ ~ E T L , S H E E T L , F S H E E T  F 4  
C F 5  
C S U B R L U T I U E  T R A C i S  F I E L D  L I N E  UPWARDS F R C P  A G I V E i u  P O I N T  U N T I L  F 6  
C A P R E F I X E D  R-VALUE I S  REACHER F 7  
C F R  

2 (  L’ lC  1 p V N 3 1  2 2 , )  , A R C  121 C )  v V N E A R l 3 )  1 V t 3 0 l 3 )  9 

D I F . l E ~ \ S I G t J  V l 3 , 3 ) ,  V4413)p  V P I 3 ) r  K 1 ( 3 ) 1  K 2 1 7 1 *  R 3 1 3 )  F 
E R R  L = C R  K 
t*l M b+ = 3 
J U P =  - F 12 
V( L,; ) = R U Y :  F 1 3  
v ( , - 1 =&UP!; F 14 
v ( 3 , -  ) = R U h * 3  F 15 
I r L ( - ) =  I .  F 16 
D C L T = 1 . 5 7  rC1 F 17 

L A K C ( ~ ) = V l 1 , 2 ) + S G H T ( E ~ R ) * ~ . ~  F 1 8  
I F  (V ( ; vL? ) -RCLT)  3 ~ 3 ~ 2  F 19 

7 ASC ( L ) = - A R C (  2 1 F 2f1  
3 C A L L  STAI<T I K 1, R L t 9 3 ,  €3, ARC, ERR 9 V 1 F 21 

I F  ( J U P . L T . 1 )  G O  TC 3 F 22 
O t i  4 I = i , 3  F 23  
V P I I ) = V ( I , 2 )  F 2 4  

4 V h l  I ) = V  I I ,  3 )  I- 23 
C A L L  L I N E S  I R l ,  RZ, R3,Rv ARC, ERR, J ,VP,  VN) F 26 

EKd=4.*ERH F ? R  
GO T L  3 F 29 
JUP=. F 3’: 

F 3: 
5 

6 C C h T  I h U  C F 3 7  
k l K I T t  ( b , B )  F R k  F 3 3  
5 0  T b  i F 3 4  

7 C R % = ; 9 h i  F 35 
JL IP=J  F 36 
B A L T = V f i U l i ) * 6 3 7 1 . 2  I- 37 
BLAT=Y”-VR0(2) .57 .2957795 F 3b 
HLCtxG=VHC(  3 ) + 5 7 . 2 9 5 7 7 9 5  F 39 
I F  I [$LUNG-GT.  l Q r ! .  1 RLONG=BLONG-36C.  F 4; 
I F  ( B L U q G . L T . ( - 1 ? 3 . ) 1  RLONG=BLONG+36‘.  F 41 
RETURIU F 42 

C F 45 
C F 44 
3 F U K V A T  ( Z 4 h  t K R C R  CHANGED I N  B E S E C T , E l 5 . 4 )  F 45 

t i 4 C  F 46 

f l  
F :  

I F  (J .LT.2Z1)  GC T O  I F 27 

LKK=‘;K*<*.$. 1 
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4 
5 

6 

7 

E 

9 

1 3  ., 
I &  

12 
13 
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1 
2 
3 
4 
5 
6 
7 
6 
9 

1 3 
11 
12  
13 
14 
15 
16 
17 
1 8  
19 
2 1.' 

2: 
2: 
23 
24 
25 
26 
27 
29 
29 
3 ' j  
3 1  
32 
33 
34  
3 5  
qh 
37 
38 
39 
+,I 
41 
42 
43 
44 
45 
46 
47 
4R 
49 
5 '> 
51 
52 
53 
54 
55 

56 
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. 

2 8  

29 

3 u 

3 1  
32 
33 

3 4  
35 

36 
37 

I 112 
I 113 
I li4 
1 115 
I 116 
I i17 
I l i e  
I 119 
I i2" 
I i21 
I 122 
I 123 
I 124 
I 125 
1 12b 
I 127 
I 128 
I 129 
I 139 
I 131 
I 132 
I 133 
I 134 
I L35 
I 136 
I 137 
I 13Q 
I 139 
I 14,. - 
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b U B R C U T I N E  I X T E G  ( A R L , B E G ~ B E N D , B , J E P , E C O , F I  1 J 1  

l V S A V E ( 3 ) , 8 O , B N E P K I J U ~ , M M M  J 3  
CCYMOhi FRONT, St’EETT, SHEETZ, FSHEET J 4  
D I M E h S I O N  8 E G l 2 2 7 ) r  B E Y D I 2 O C ) s  ECO(2C.3 )  J 5  

1 KK=JEP J 6  
I F  I K K - 4 )  3 , ,? ,& J 7  

L KKzKK- :  J 9  
3 A = B ( K K - l I / B I Z )  J Y  

X Z = e I K K ) / B ( Z )  J 1s 
X 3 = B ( K K + l ) / R I 2 )  J 11 
A S U R = A K C ( K K ) + A R C l K K + i )  J 1 2  
DtJ=ARC( K K I  + A R C (  K K + l  )+ASUH J 13 
R 8 = l - A * A R C ( K K + l ) ~ l A K C ( K K ) + A S U M I + X Z + A S U M , * 2 - X 3 * A R C l K K ) * + 2 ) / D N  J 14 
C = ( A + A K C ( K K + 1 ) - X 2 4 A S U M + X j * A R C I K K ) ) / D N  J 15 
FI=i.~7~7963~6*ll.-A+B8*8B/(4.*C~~/SQ~TlABSlC~~ J 16 
RETUKN J 17 

4 T = S P K T I  ?.-BENE( 2 1 / e (  2 1 1 J 1 8  
F i = l 2 . + T - A L O G l (  : . + T ) / ( l . - T ) ) ) / E C U ( ~ )  J 19 
I F  ( 6 ( 2 ) - B E N C I K K ) )  6,695 J 20 

5 K K = K K + 1  J 21 
6 T = S C R T ( A B S ( 1 . 0 - B E G ( K K ) / B O ) ) )  J 2 2  

FI=FI-(i.*T-ALCG((l.+T)/(l.-T)) ) / E C O ( K K )  J 23  
K K = K K - 1  J 2 4  

A R G 1 = 1 . - B E Y C l I ) / P l 2 )  J 26 
I F  1 4 R G 1 )  7,712! J 27 

7 T E = i . E - 5  J 28 
GO T C  9 J 29 

8 TE=SQRT t AKGL 1 J 30 

I F  ( A K G l )  11,1?,?0 J 32 
19 T@=SQRT I ARGL 1 J 33 

GO T C  12 J 3 4  
11 T B = l . E - 5  J 3 5  
12 I F  ( A B S ( E C O ( I ) ) - Z . E - 5 )  1 3 t i 3 ~ 1 4  J 36 

J 37 

COMMON R l 2 i J 3  1 r V F u l l t O S  )1VN2( Z C O )  9 VN31203 1 ( A R C  ( 2 3 0 )  ,VNEAR 13) 9 V B O I 3 )  9 J 2 

- 

DO 1 5  I = 3 * K K  J 2-5 

9 A K G l = l . - B E G I  I)/@(Z) J 3 1  

R E T U K N  
ENC 
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J 41 
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. 

2 

C 
C 
C 

3 

SUeRbUTINE M O D Y A U  LRRD~INTH,PPHI,BR~BTHETA,BPH!DBB,THET) 

SUBROUTlNE MODMAG ( S ? ~ S I N T H , P P H I ~ B R ~ B T H E T A , B P H I I B B I T H f T )  
C O M M O N  F R O N T D S H E E T l , j H E E T 2 r ; S H E E T  

S U B R O U T I N E  ASSEMBLES MAGNETIC F I E L D  FROM T A I L 0  M4QNETOPAUSE AND 
INTERNAL D I P O L E  - 737  E N Q U I 7 1 E S  W R I T E  T O  Q I I B E R T  MEAD, OODDARD 
SPACE FLIQWT CENTER, OREENBELT M A R Y L A N D  2 0 7 7 1  

DIMENSION G G ( 7 , 7 )  
DIMENSION a ( 7 1 7 ) ,  C O Y S T ( 7 , 7 ) ,  P ( 7 , 7 ) r  D P ( 7 ~ 7 ) r  S P ( 7 1 ,  C C ( 7 )  

S I N P H I  a - S I N ( P P H I J  
C O S P H I 8 - C O S ( P P H I )  

COSTHcCOS(tWET) 

ROaFRONT 
R ~ E S H E E T ~  
RZESHEETZ 
BCSmFSWFfT  

PAGE 4 1  

J 1  
J 2  
J 3  
J 4  
J 5  
J 6  
J 7  
J 8  
J 9  
J 1 0  
J 11 
J 1 2  
J 1 3  
J 1 4  
J 15 
J 1 6  
J 1 7  
J 18 
J 1 9  
J 2 0  
J 2 1  
J 2 2  
.A 2 3  

J 25 
J 26 
J 2 7  
J 2R 
J 29 
J 30 
J 3 1  
J 3 2  
J 33 
J 3 4  
J J 5  
J 36 
J 3 7  
J 38 
J 39 
J 4 0  
J 4 1  
J 4 2  
J 4 3  
J 4 4  
J 45  
J 4 6  
J 47 
J 48 
J 4 9  
J 50 
J 5 1  
J 52 
J 53 
J 5 4  
J 5 5  
J 56 
J 5 7  
J 58 
J 59 

J 2 4  
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4 
5 
5 

7 

9 
9 
" " 
" " 

n " 
I - " 
1 3  

n " 
n " 
" " 

,. " - " 
" r 

11 

12 

1 3  

1 4  

J 60 
J 61 
J 62 
J 63 
J 64 
J 65 
J 66 
J 67 
J 68 
J 69 
J 70 
J 71 
J 72 
J 73 
J 74 
J 75 
J 76 
J 77 
J 78 
J 79 
J 80 
J 81 
J 0 2  
J 83 
J 04 
J 05  
I 06 
J 87 
J 88 
J 09 
J 90 
J 91 
J 92 
J 93 
J 94 
J 95 
J 96 
J 97 
J 98 
J 99 
J 1 0 0  
J 1 0 1  
J 102 
J 1 0 3  
J 1 0 4  
J 1 0 5  
J 106 
J 107 
J 108 
J 109 
J 1 1 0  
J 111. 
J 1 1 2  
J 1 1 3  
J 1 1 4  
J 115 
J 116 
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1 5  

1 5  

C 
C 
c 

.. 
" " .. 

J 117 
J 118 
J 119 
J 120 
J 121 
J 122 
J 123 
J 124 
J 125 
J 126 
J 127 
J 120 
J 129 
J 1 3 0  
J 131 
J 132 
J 133 
J 134 
J 135 
J 136 
J 137 
J 138 
J 139 
J 140 
J 141 
J 142 
J 143 
J 144 
J 145 
J 146 
J 147 
J 148 
J 149 
J 150 
J 151- 
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